Royalty Free Stock Images

Making great 3D warehouse model? Look the video

For years now, SketchUp users of all skill levels have provided 3D models to the world through 3D Warehouse. We’re continually surprised by the breadth of 3D Warehouse contributions, but for a while now, we’ve been wondering how to help people make good models great.
Recently, we have taken some time to reflect on What makes a great 3D Warehouse model? To get everybody on the same page, we have developed a checklist that should help you create beautiful, useful, and easy-to-operate 3D Warehouse models. We’ve also created an article and a video series that digs deeper into what each item on the checklist means and how to hone your SketchUp skills to achieve the desired results.

At a minimum, models should be at real world size so that others can place and use them easily in their models. We’re nuts for managing model efficiency, so we also think that models should be lightweight and have an appropriate number of polygons to represent the geometry correctly.
This checklist is a great guide for anyone creating a lot of 3D Warehouse content, and we think it will be particularly useful for building product manufacturers who are recreating their products on 3D Warehouse. Well-constructed models are easy for designers to incorporate and specify, and are the basis for improved design accuracy, cost estimates, and even public safety.
We love that it’s easy and fun to create SketchUp models; creating great 3D Warehouse models makes SketchUp even easier and more fun for everybody. Using this checklist, the SketchUp community can continue to contribute great, high quality models to share with an entire planet of designers.


3D Printing: Should Designers And Developers Take Notice?

3D printing is not a new technology, but recent advances in several fields have made it more accessible to hobbyists and businesses. Compared to other tech sectors, it’s still a small industry, but most analysts agree it has a lot of potential. But where is the potential for freelance designers and software engineers?
A fellow Toptaler asked me this a couple of weeks ago, because I used to cover 3D printing for a couple of publications. I had no clear answer. I couldn’t just list business opportunities because this is a niche industry with a limited upside and mass market appeal. What’s more, 3D printing is still not a mature technology, which means there is not a lot in the way of standardisation and online resources for designers and developers willing to take the plunge.
However, this does not mean there are no business opportunities; they’re out there, but they are limited. In this post, I will try to explain what makes the 3D printing industry different, and what freelancers can expect moving forward.

3D Printing For Hobbyists And Businesses

First of all, I think we need to distinguish between two very different niches in the 3D printing, or additive manufacturing industry.
On one end of the spectrum, you have countless hardware enthusiasts, software developers and designers working on open-source projects. The RepRap project embodies this lean and open approach better than any similar initiative in the industry. RepRap stands for Replicating Rapid Prototyper and it’s basically an initiative to develop inexpensive printers based on fused filament fabrication (FFF) technology. Essentially, that is Fused Deposition Modelling (FDM) technology, but RepRap can’t use that name because it was commercialised by Stratasys. When the company’s patent on FDM expired, FDM was embraced by the open-source community, albeit under a different name.
3D printing is not a new technology, but recent advances in several fields have made it more accessible to hobbyists and businesses.
3D printing is not a new technology, but recent advances in several fields have made it more accessible to hobbyists and businesses.
RepRap turned ten this year, with the first printers showing up a few years after launch. By 2010, the RepRap project was on its third generation design, and the RepRap community saw a lot of growth over the next few years.
One noteworthy feature to come out of the RepRap initiative is self-replication; the ultimate goal of the project is to create a 3D printer that will eventually replicate itself. We are not there yet, but some RepRap designs allow users to print three quarters of the printer. You still can’t print extruders and electric servos, but it’s a start.
However, RepRap was never supposed to be a commercial success. It was created as a tech-first initiative, so it was never consumer-centric. It was all about pioneering various technologies and bringing them to the hobbyist market at low cost. RepRap was never supposed to be a cash cow.
So what about big business? A number of industry pioneers have already become 3D printing heavyweights. These include Stratasys, 3D Systems, Ultimaker and Printbot. RepRap printers still command a big market share, and they’re not being squeezed out by proprietary platforms. In fact, most vendors have no choice but to embrace some RepRap standards in order to guarantee compatibility.
However, simply listing 3D printing companies and their respective market share does not paint the full picture. For example, RepRap is limited to FFF technology, which is the most widespread 3D printing technology today. The problem is that FFF printers have a lot of limitations, which means they cannot be used in many industries.

Different Technologies For Different Applications

To get a better idea of what’s out there, we need to take a look at currently available 3D printing technologies. This might not seem interesting if you’re not a hardware geek, but it’s important to understand the difference between various printing technologies (and I will try to keep this section as brief as possible).
Although hobbyist FFF printers are relatively inexpensive, certain types of professional 3D printers can cost as much as your home.
Although hobbyist FFF printers are relatively inexpensive, certain types of professional 3D printers can cost as much as your home.
  • FFF/FDM usually relies on thermoplastic “filament” heated by the printer extruder prior to being deposited on the print bed. Most FFF printers rely on ABS and PLA plastic filament, but the latest models also use polycarbonate (PC), high-density polyethylene (HDPE), high-impact polystyrene (HIPS) filament. Some even use metal wire instead of plastic, while others use sawdust to create quasi-wood objects. Some can even print food, chocolate, pasta and so on.
  • Granular printers are different beasts since their material is not filament but, usually, powdered metal. These printers tend to be based on laser technology (although they don’t have much in common with your office laser printer). They use a powerful laser to selectively fuse granular materials. There are several ways of doing this: Selective laser sintering (SLS) printers fuse small metal particles by the process of “sintering,” while selective laser melting (SLM) printers melt the powder. Electron beam melting (EBM) printers hits metal powder with an electron beam in a vacuum environment
  • Stereolithography (SLA) printers transform liquid raw material into solids using light. These printers have a number of advantages, in terms of accuracy and the ability to produce complex objects in a single pass, because SLA prints don’t require struts or supports, in most cases. The downside is that the choice of materials is very limited. They are usually exotic liquid polymers, and can’t be used to print metal or chocolate.
There are a few more 3D printing technologies out there, but I see no point in covering all of them for the purposes of this blog post.

The Challenge

So why aren’t we all playing around with 3D printers in our homes and offices? Why can’t we print objects the same way we print invoices, sheets and emails? 3D printing is not going mainstream any time soon, and here are some challenges and issues that need to be addressed first.
  • Prohibitively expensive hardware
  • Limited user base (compared to traditional printers)
  • Immature technology
  • Speed
  • Price/performance, ROI
  • Running costs
  • Energy efficiency
With each new generation, entry-level 3D printers become a bit cheaper, but they are still too expensive for most potential users. It’s one thing to buy a $200 printer for your home or office, you’ll probably end up using it a lot, but the same isn’t necessarily true of 3D printers. How many people need to print documents, and how many need to print 3D objects?
Technology is improving, but serious limitations persist. 3D printers are still slow, are sensitive to all sorts of adverse conditions, their “printbeds” tend to be small (especially on inexpensive models), the choice of materials is limited and filament can be expensive.
The reason why businesses aren’t lining up to buy 3D printers is simple: ROI. 3D printers still can’t come close to traditional manufacturing methods in terms of speed, cost and energy efficiency. This does not mean industry isn’t going to shift to 3D printing in the future; we are already seeing some pioneering developments, but 3D printers won’t render traditional manufacturing techniques obsolete soon.
Still, there are some noteworthy exceptions. A couple of years ago, General Electric set out to design and build a new fuel injection nozzle for its next generation CFM LEAP turbofan engine, which is bound to end up in hundreds of airliners. GE eventually settled on 3D-printed titanium nozzles. The reason? The new 3D printed nozzle ended up 25 percent lighter than the previous design and consisted of a single part instead of 18 on the old nozzle. Durability is expected to be five times better. These nozzles will be used in engines manufactured in 2016 and beyond. GE hopes to produce more than 100,000 3D-printed parts by the end of the decade.
A team of GE engineers decided to create a working replica of one of the company’s engines, using a new granular printing technique dubbed “metal laser melting.”
Long story short, no, you won’t buy 3D-printed toys for $2 anytime soon, but you will fly on airliners powered by more efficient and reliable engines, made possible by 3D printing. There won’t be any 3D-printed chocolate in your local mall, at least not yet, but your dentist will tell you it’s probably not a good idea to eat chocolate anyway, right after you get your 3D-printed prosthetic.

There Is Another Way: 3D Printing Fulfilment Services

So, you have a great idea for a product, but first you need a small series of prototypes. Who do you call? Do you buy a bunch of 3D printers? Or do you simply send the design to a fulfilment service that will ship you the completed models in a matter of days?
Fulfilment services allow consumers and small businesses to take advantage of sophisticated 3D printing infrastructure without burning capital.
Fulfilment services allow consumers and small businesses to take advantage of sophisticated 3D printing infrastructure without burning capital.
A 3D printing fulfilment service seems like a hassle-free choice, and that’s the direction the industry seems to be taking. Many 3D printing outfits have launched similar services and are collaborating with other industry leaders. One example of this symbiotic relationship is Stratasys Direct Express, which recently partnered with Adobe and enabled Photoshop CC integration, offering colour 3D printing for professional designers.
Google and Motorola didn’t invest billions in their own 3D printing facilities when they unveiled the Ara modular smartphone concept. They outsourced module manufacturing to 3D Systems. This example also underscores the potential flexibility of additive manufacturing: Ara is based around an alloy exoskeleton filled with various standardised modules that could be 3D printed. Since the modules have to connect to the exoskeleton, 3D Systems developed a new technique of depositing conductive materials within the printed components, which is a far cry from traditional 3D printer prototyping.
3D fulfilment services usually offer several different printing technologies, cutting-edge hardware and support. Why bother getting a $2,000 printer when you can simply send your designs to professionals and use any of a variety of professional printers, some of which cost more than your home? And let’s not forget about economy of scale; big services can and should offer a superior price/performance ratio compared to in-house printing.
In my opinion, this is the way to go. This straightforward business model has a lot going for it, and it’s hard to see how individuals and small businesses could compete on an even playing field. In terms of price, size and energy consumption, a professional 3D printer has more in common with a printing press than your LaserJet, and how many people need a printing press in their home or office?
(One of my pet peeves is the name itself. When you mention a “printer” in conversation, most people think of their home inkjet printer, or office printer. While it’s true that 3D printers are printers, they don’t have much in common with traditional printers, and this distinction is often lost on laymen. If we just kept calling them additive manufacturing machines, this wouldn’t be an issue.)

3D Printing For Designers And Developers

What does all this mean for the average visual designer or software engineer? Will 3D printing change the way we do business? Will it enable rapid prototyping or even cheap small-scale manufacturing? When are we going to cook up some 3D-printed Barilla pasta for lunch?
I am afraid there is no simple answer because you can look at it from several perspectives. It all depends on your personal affinities and goals.
There are a few different ways designers and developers might become involved in 3D printing:
  • Participation in open-source initiatives (RepRap)
  • Use of professional design tools (Adobe CC)
  • Integration of printing functionality to applications (Autodesk’s Spark 3D printing platform)
  • Use of 3D printing fulfilment services
  • Integration of 3D printing fulfilment services
Most open-source initiatives are geared toward individual, hobbyist users. They are also valuable for education, and they can foster a lot of innovation. The downside is that there’s not a lot of money to be made in this niche. It’s mostly a labour of love. The good news is that the bar is set pretty low; you can get an entry-level printer and loads of plastic filament for under $500. You can get a cheap and relatively good 3D printer for the price of a good smartphone.
Integration of 3D design and printing capabilities could prove more lucrative in the long run. Designers don’t have to go out of their way to experiment with 3D printing because it’s already accessible through leading software packages. Sooner or later, a client will start asking questions about 3D printed prototypes or small-scale production, so depending on your niche, it could be a good idea to do a bit of research.
We’re left with the elephant in the room: 3D printing fulfilment services.

Outsourcing 3D Printing Via The Cloud

On the face of it, fulfilment services seem to be the answer to everything. They put professional services within the reach of individuals, startups, and small businesses who otherwise couldn’t afford certain printing techniques, like laser sintering or stereolithography. They’re practically the only viable way of integrating 3D printing into a range of different services, mainly through cloud-based mobile and web apps.
So what are the downsides? There aren’t many.
Industrial scale fulfilment services are a relatively new concept. However, availability is still limited. Sure, if you need to print a few dozen titanium prototypes in California that won’t be a problem, but what if you need to do the exact same thing in Botswana or Bahrain? It will be more expensive because the manufactured designs will have to be shipped around the globe. On-site manufacturing sounds good, but it could prove prohibitively expensive
Of course, on-site manufacturing has a lot going for it; if a business needs to quickly iterate and revise designs, then the speed and convenience of 3D printer rapid prototyping can’t be matched by printing services. This is a relatively tight niche, but it’s by no means small. Design studios, architects, engineers, various maintenance departments, logistics, education; they all need on-site printers. Besides, if you need a printed replacement part on the International Space Station, you can’t exactly call Amazon. On another note, 3D printing in space would have made the exploits of the Apollo 13 crew look less impressive. No wonder NASA is already experimenting with them in space.
It’s worth noting that 3D printers can be used to print more than replacement parts and passive components. They can also be used to print working electrical components, ranging from speakers to printed circuit boards (PCB). PCB prototyping is a nice niche because traditional methods are slow and expensive. A 3D printer with a spool of conductive filament can usually do the trick on-site, on time, and on budget.
Still, as far as mass market applications go, chances are this space will be dominated by big players like Amazon, Stratasys, 3D Systems, and possibly Hewlett-Packard. As the industry matures, worldwide availability should become a non-issue, prices will go down and new hardware will offer new opportunities and superior quality.
In my opinion, the biggest problem the industry currently faces is the lack of use-cases. Sure, it sounds convenient, but who is it for? How do we get 3D-printed products into the hands of mainstream consumers?
This question is not as straightforward as it seems because additive manufacturing has been hyped in recent years. Just try googling for 3D printing use-cases and you’ll see what I mean: 3D printing seems to be the answer to all our problems, but in reality most of it is hype, based on long-term projections.
So, I decided to include research from an unbiased source: UK’s Intellectual Property Office. The paper, titled The Current Status and Impact of 3D Printing Within the Industrial Sector: An Analysis of Six Case Studies is extensive and examines the potential impact of additive manufacturing on several industries: automotive, domestic appliances, replacement parts, customised goods, reverse engineering, games and computer generated graphics.
Customised goods and CGI-derived designs stand out as the most realistic use cases for freelancers, so let’s take a closer look.

Personalised Manufacturing

One of the biggest advantages of additive manufacturing over traditional manufacturing methods is the ability to produce one-off designs or small series. How long would it take to create a plastic toy using traditional manufacturing? You’d need loads of equipment, cast dies and whatnot. With 3D printing, it’s just a matter of selecting a wireframe and clicking. This means it’s possible to produce unique designs, tailored to meet the needs of different customers.
Additive manufacturing can enable average consumers to design and customise various products prior to making a purchase. This can be done using professional desktop applications, or even web and mobile apps. Nobody expects the average consumer to design an item from the ground up, but even a child could customise a toy using a simplified mobile app.
The potential for personalised manufacturing is one of the key benefits provided by 3D printing.
The potential for personalised manufacturing is one of the key benefits provided by 3D printing.
Such a platform would have to include loads of different colour or decal options, along with the 3D wireframes themselves. What’s more, it should be possible to create modular designs, so if kids are customising a toy car or doll, they could choose between scores of different, but compatible, components that would be assembled to make the product.
Yes, instead of customising virtual environments in apps and games, kids born today will be able to personalise their real toys, or turn their video game characters into action figures. It kinda makes you wish you were born a couple of decades later, doesn’t it?
Here are a few personalised 3D printing use-cases with mass market appeal:
  • Toys
  • Custom jewelry
  • DIY and hobbyist products
  • Fashion and gadget accessories
  • Personalised appliances and household items
However, products don’t have to be personalised to match your taste; they could also be made to perfectly match your physique, like a tailored suit. These products might not have the mass market appeal of personalised toys, but that doesn’t make them less exciting. In fact, I find them a lot more interesting than a customised brooch or doll.
Here are just some examples:
Sure, these applications don’t have nearly the same emotional appeal as the ones I mentioned earlier, but in the big scheme of things they could be just as lucrative and important, especially when you consider medical applications.

The Implications And Future Of 3D Printing

So what’s the bottom line? Will 3D printing change the industrial landscape? Is it really the next industrial revolution?
3D printing, or additive manufacturing, is a very promising, but immature, technology. It clearly has a lot of potential, but we’re still nowhere close to realising it even though the industry is seeing a lot of growth.
In fact, the market for 3D printing services, hardware, and materials, has been growing at a healthy double-digit rate for years. Most analysts expect the market to double by the end of the decade, passing the $10 billion mark. That may sound like a lot of money, but let’s put it in perspective: The same analysts expect annual smartphone shipments for 2015 to end up in the 1.3 to 1.4 billion unit range.
Looking past the hype, 3D printing is a technology with limited appeal, at least at this early stage. However, we will continue to see growth and development for the foreseeable future, backed by new use-cases. Many of these use-cases and business models will be based around 3D printing fulfilment services. This is good news for small businesses and individuals, because they will be able to use third-party infrastructure with relative ease. They won’t have to buy dozens of printers, they will simply integrate a few APIs to their platform and that’s it.
In the short term, this is the future of 3D printing, at least from a mass market perspective.
This post originally appeared in the Toptal Design blog

Microsoft to bring Immersive 3D to AEC Models with HoloLens and SketchUp

You’ve heard of the Oculus Rift, you’ve seen holodecks on sci-fi shows and you may have read about Reality Computing with us before. But have you heard of the HoloLens yet?
Microsoft’s answer to the Oculus Rift, the HoloLens is a holographic computer headset. It runs on Windows 10.
With the HoloLens, users can project all their favorite apps and social media into the world around them. Users interact through hand gestures and voice commands.
HoloLens in an AEC World
The technology is already finding real world applications in AEC industries thanks to integration with Trimble's SketchUp.
With SketchUp, AEC professionals can take 3D models from their computers and upload them into the HoloLens. Models can be presented in miniature in front of users both near and far, or you can build the model around you in full scale.
Alterations to 3D models can be made in real time with the HoloLens, making “what-if” scenarios and changes in plans easier to handle out in the field.

AEC professionals will see their models come to life around them through the HoloLens’ mixed-reality 3D display.
"Microsoft HoloLens is a revolutionary tool for people and businesses enabling professionals in industries like design and construction to do more and achieve more," said Yusuf Mehdi, corporate VP at Microsoft. "Trimble's deep knowledge of design and construction processes makes it a natural partner in bringing holographic computing to this industry." 
Microsoft, Trimble Partnership
Trimble’s team-up with Microsoft doesn’t end with SketchUp, though.
Trimble Connect, based on Gehry Technologies’ GTeam software acquired in 2014, will enable teams to access and manage project data via a cloud platform.
An integrated camera system, the Trimble V10 Imaging Rover, will capture 360-degree digital panoramas transform them into data-rich geospatial deliverables.
These HoloLens applications, including the integration of SketchUp, are still under development.
The HoloLens proof of concept was displayed earlier this week at Microsoft's Build Developer Conference.
What fantasies do you see coming to life with the HoloLens and SketchUp pairing? Let us know in the comments below.
For more information on the HoloLens watch this video, or visit Microsoft’s official page.

New Materialise and SketchUp partnership brings nearly 3 million 3D models to users

Although many 3D printer manufacturers and service providers have found amazing success with launching their own independent products, it’s been just as interesting to see what happens when two companies have come together to create the best of what each company offers in a singular product.  Most recently, we’ve seen this with 3D Hubs and Thingiverse after the latter began integrating their on-demand 3D printing service directly into Thingiverse’s catalog of 3D print-ready digital models.  
Now, Materialise has teamed up with Trimble (owners of SketchUp) to streamline a new cloud-based service that improves the accessibility and printability of 3D models that are currently available inTrimble’s 3D Warehouse.  
Trimble, who purchased the popular SketchUp 3D modeling platform from Google in 2012 for an estimated $50-$100 million, has been busy since their purchase improving on the CAD program for their user base of over 30 million designers.  Their latest version of SketchUp, SketchUp 2015, was released in November of 2014.  The 3D Warehouse component of the company’s ecosystem contains nearly 3 million downloadable 3D models which are downloaded over 4 million times by nearly 1 million visitors every week.  
As a part of the collaboration, 3D Warehouse’s Printables feature will be powered by Materialise’s new cloud services to generate high-quality STL files, while also analyzing and fixing models as needed.
The new cloud services from Materialise, which are currently being used to operate their ownIdeasWorthMaking.com platform, were launched in 2014 in an effort to help drive meaningful applications to desktop fabrication and has helped provide a platform for educational and maker contests and challenges since its inception.  
“The belief that design tools should be as simple and intuitive as possible is deeply rooted in the philosophy behind SketchUp,” said Mike Tadros, Product Manager for 3D Warehouse.  
“Trimble’s collaboration with Materialise is aimed at eliminating the most common pitfalls and annoyances related to 3D Printing workflows.  There are a number exciting possibilities that can surely arise from our users being able to share and reliably access print-ready files directly from 3D Warehouse.”
The new offering from the companies was announced at the Materialise World Conference in Brussels in Brussels last week.   
Currently, Materialise and 3D Warehouse are testing the new features in beta, with a full launch planned sometime in the near future.
“For the past 25 years, we at Materialise have been developing software to empower useful applications of 3D Printing, both medical and industrial, and help users of 3D Printers to get the most out of their machines,” said Stefaan Motte, Director of Software for the Additive Manufacturing unit at Materialise.
“Through this collaboration, which links our new cloud service to 3D Warehouse, our goal is to now deliver an enhanced user experience to a much broader 3D printing community as well.  My hope is that the Printables feature enables this community of designers, artists, makers, and more, to focus even more on the design and creation of meaningful 3D Printing applications, while leaving the question of ‘Will it print?’ to our software.”


Similar to SketchUp?

No, it's Autodesk FormIt 

Autodesk is showing its conceptual modeling tool, FormIt, at the annual gathering of architects held by AIA. It appears remarkably easy to use. 3D buildings are easily created and modified with a push or pull. It’s like I’ve seen this somewhere before… Oh, yeah. It was called SketchUp.

Autodesk’s FormIt may remind you of another architectural conceptual modeling program
Autodesk’s FormIt may remind you of another architectural conceptual modeling program
Architects have almost universally accepted SketchUp, which has been giving away its easy-to-use 3D modeler for years. This has no doubt been a vexation to Autodesk, whose Revit software, while close to a standard as a BIM design software, does not lend itself to the type of 3D “sketching” architects need to do at the conceptual stage of design.
Autodesk must have chafed at the use of SketchUp, which they had knocked for not being precise, not being a real solid modeler and not being able to merge efficiently into “serious” design tools. But nothing could pry SketchUp from architects’ hands.
So Autodesk creates FormIt
Of course, Autodesk would never copy SketchUp, right? It would be preposterous to think a software leader of high standing would stoop to anything so low. The giant that has never admitted to even having any competition. And how would that look, when the giant has actively and aggressively pursued others for copying their software.
I am not making any friends at the Autodesk booth with my unwelcome comparisons to a product it could never have copied. So I wander over to the SketchUp booth to get their take on FormIt, where I wonder out loud if SketchUp should be worried about the giant’s hot breath on their neck.
The SketchUp guys have quite another opinion on the similarity of FormIt. Their product manager bites his tongue when he sees I am taking notes. He answers instead with a barrage of numbers, most of them ending in “million” that signify the immense following and insurmountable lead SketchUp already enjoys.
But I can’t resist. I have to tell them FormIt is a real solid modeler. And it does tie directly into Revit.
SketchUp doesn’t deny it.
“But have you tried using it?” he asks rhetorically. He piques my interest, and I’m curious enough to see what real architects have to say. 

SU Podium v2.5 Plus for SketchUp by Cadalog

More geometry, more textures, more speed:

With significantly increased speed and an exciting new Panorama feature for presenting interactive, 360 degree VRs, Cadalog, Inc has released SU Podium v2.5 Plus for SketchUp.

After months of development, SU Podium v2.5 Plus implements a shift from Ruby to C++, meaning the plugin can now process SketchUp models and communicate with the photon mapping/ raytracing engine up to 20 times faster than in previous versions.
Models with significantly more geometry, textures, and materials, will produce far less impact on render-times. In tests, Podium v2.5 Plus was able to export a model to its rendering engine, with 760,000 faces and 145 materials in only 43 seconds. Older versions of SU Podium required over 12 minutes to complete the same task.
360 degree Podium Panoramas:
v2.5 Plus also has an eye toward client presentations with the introduction of Podium Panoramas. The new feature allows users to render a 360 degree panorama of any SketchUp scene, which can be converted to an interactive presentation from directly within SU Podium.
Panorama presentations can be sent directly to clients or embedded on a web page, and lets your client control a camera to “look around” the design as if they are standing in the space. Panoramas convey far more information in a single render than ever before, and retain the beautiful lighting and photo-realism you’ve come to expect from a Podium render.
This link shows an example of SU Podium’s Panoramas using Sphere Cast’s VR hosting site (in beta). You can also generate the Panorama directly from SU Podium’s image editor.
The SU Podium v2.5 Plus upgrade is available to existing Podium users for $29.95 in the Cadalog webstore, and $198 for new users.

SU Podium v2.5 has both 32 bit and 64 bit versions for Windows 7/ 8 and Mac OS-X. It requires SketchUp 2015 or 2014. Thirty day trial versions can be download from here.

Create instant photoreal snapshots with Visualizer

Simple, fast, fun: three adjectives we often use to describe SketchUp. They also fit pretty well for Visualizer, an extension that provides instant photographic previews of SketchUp models and exports fast, clean photoreal images. You know, delicious stuff like this:
3D Warehouse model of the Sydney Opera House, processed in about 60 seconds with Visualizer.

3D Scanning Extension for SketchUp

The Trimble Scan Explorer Extension
Trimble (NASDAQ:TRMB) announced today the release of Trimble® Scan Explorer Extension for SketchUp Pro; a powerful, easy-to-use tool enabling architects, engineers and geospatial professionals to create models from 3D scanning data. The new solution connects the high-resolution field data from Trimble scanners with intuitive and powerful professional modeling software; simplifying the process of creating, accessing and sharing precise 3D models of the real-world environment.  

The BIMobject® App released for SketchUp

BIMobject® announced today that the cloud integration App for Trimble SketchUp is now released. The App is completely free of charge for all SketchUp users worldwide.  The App contains features such as providing the user with a toolset to find, source, update and check BIM objects supplied through the BIMobject® cloud completely integrated in their software.