Google SketchUp is software that you can use to create 3D models of anything you like.On this blog you can find mostly furniture 3d models. sketchup, 3d models , sketchup models, sketchup components, .skp models, sketchup model , free sketchup models , furniture models , 3d models

Microsoft has a long tradition of spicing up relatively dull product announcements with compelling tech demos, and the Windows 10 announcement was no exception. The software giant used the opportunity to create a fair amount of buzz about the HoloLens, a futuristic headset that offers a glimpse into the future of Augmented Reality (AR). However, Microsoft also has a tradition of spectacular hardware flops, which peaked under the Ballmer regime. Remember the Kin phone? Neither do I.
The introduction of HoloLens probably won’t be such a flop for a number of reasons. First of all, the HoloLens still has a long way to go before it becomes a commercially viable device - it could be about a few quarters, or a couple of years. Secondly, the concept behind it is sound, and builds on a few promising emerging industry trends, such as wearable tech and Virtual Reality (VR) headsets. The HoloLens is trying to be somewhat different by bundling a lot of functionality into a single device, but in this Microsoft HoloLens review we will take a look at what’s already out there and what is in the works.
microsoft hololens and VR
Since this is an engineering blog designed for VR professionals and other engineers, I won’t spend much time answering the question “What is HoloLens?” and explaining the difference between AR and VR. Augmented reality technology has a range of potential applications in various industries, but limited applications in entertainment. Virtual reality is more geared towards entertainment, although it has some professional applications as well.
Both technologies still have a lot of limitations, and numerous technical challenges have to be overcome in order to gain mass market appeal. This is a gradual process that will take years rather than months. The technology needed to create such products without breaking the bank is simply not ready, but it’s slowly getting there.
Let’s take a look at what’s out there and what’s missing.

Hardware Limitations - Google Glass vs. Oculus Rift vs. Microsoft HoloLens

Google Glass was announced in early 2012 and started shipping a year later at a cost of $1,500. The high price tag meant it was reserved for a very small niche – early adopters described as “explorers” by Google’s PR and marketing machine. The device offered limited AR functionality, and contained a small prism projector with a resolution of 640x360 pixels, powered by an outdated processor.
While it managed to captivate the public for a while, Google Glass can hardly be described as a success. App developers who were keen to jump on the bandwagon started losing interest, along with “explorers” who appeared to get over the fad in a matter of months. The latest rumours point to a new version of Google Glass with Intel silicon inside, so it might be a bit too early for an obituary. Either way, Google Glass was not a big success no matter how you look at it.
Oculus Rift is perhaps the most talked about VR system at the moment, but unlike Google Glass, it has yet to launch. Oculus VR has been working on the device for years, and in the process the company went through two generations of development kits. The consumer version is expected to launch sometime in 2015, with a revised spec. In March 2014, Oculus VR was bought by Facebook for more than $2bn in cash and Facebook stock.
Samsung’s Gear VR offers a different approach, as it utilises the Galaxy Note 4 phablet in lieu of a built-in screen, but it relies on some technology developed by Oculus. I find the modular concept interesting, as a similar approach could be employed with a range of mobile devices from different vendors that would allow users to effectively upgrade hardware every time they got a new phone. Qualcomm’s Vuforia platform boasts some promising features for mobile devices and potential AR/VR applications.
So, what’s missing? The simple answer might be processing power, but it’s a bit more complicated than that.
The problem with both concepts is that they are still ahead of their time, and the technology still needs to catch up. Microsoft’s HoloLens is bound to suffer from the same teething problems, but Microsoft’s concept is somewhat different, and therefore stands a chance of overcoming at least some of these issues.
Google Glass was designed as a lightweight wearable, which resulted in a number of compromises. The device featured a single display on a thick prism in front of the user’s right eye. The resolution was very limited given the field of view (FOV). For example, smartwatch displays tend to feature similar vertical resolutions for a device that takes up just a couple of degrees of the user’s field of view. Google Glass was based on an antiquated System on Chip (SoC) and had limited battery life.
Designing mobile devices is not easy, and always involves a number of trade-offs. Higher resolution displays require more GPU power, necessitating the use of bigger SoCs with more powerful GPUs working at a higher load, which then requires a larger battery and so on. It’s a fine balancing act, and an AR headset is simply too small to accommodate a large battery like those used in high-resolution tablets.
At first glance, Oculus Rift does not appear to suffer from similar shortcomings on the hardware front, since it does not have compromises for the sake of battery life and portability. It does not rely on an integrated SoC, and a 1080p display sounds desirable; but, in reality it’s not nearly enough for photorealism. The device has a very large FOV, and pixel density is still insufficient.
To overcome this problem, VR devices would have to use higher resolution 4K/UHD displays, or even 8K displays at some point in the future. The technology is almost there, but it does not come cheap, and is anything but portable.
If you want to run the latest AAA games on a 4K display with the highest possible detail settings, you need two high-end discrete graphics cards. For example, Nvidia and AMD cards based on flagship Maxwell and Hawaii generation GPUs. To eliminate frame tearing (using technologies similar to Nvidia’s G-Sync or AMD’s FreeSync) you need a bit more power, and to do proper 3D for both eyes you need even more GPU power.
The bottom line is: to power a 4K VR device using currently available technology, you would need at least two GPUs with a total of 12-14bn transistors in 28nm, consuming 350W to 500W of power, not counting the CPU and rest of the system. This is a conservative estimate, based on currently available GPU and CPUs - and let’s not even discuss the idea of powering two 4K screens, one per eye.
Nvidia’s latest mobile SoC, the Tegra K1 64-bit used in the Google Nexus 9, features 192 CUDA cores based on Kepler architecture, not the more efficient Maxwell. The company’s current flagship discrete graphics cards sport 2048 Maxwell CUDA cores running at higher clocks than Kepler cores in mobile Tegra SoCs.
Portable VR devices with photorealistic graphics are clearly unavailable for years to come, and even wired devices like Oculus Rift have a long way to go. The overall platform cost is another concern. Gaming PCs capable of pumping out playable frame rates at 1080p are relatively cheap, since mainstream GPUs are fast enough to do the job. But at 2160p you need four times the GPU muscle, backed by more memory and a faster CPU.
There is another way of tackling this problem, and I will go over it later.

So What Did Microsoft Get Right?

Remember Facebook’s Oculus Rift deal I mentioned earlier? Just a few days after it was announced, it emerged that Microsoft bought intellectual property (IP) assets related to augmented reality and wearable computers from the Osterhout Design Group (ODG). Some of the patents covered “see-through near-eye display glasses” with a partially transmitting optical element.
In other words, Microsoft bought the IP needed to create HoloLens; and the deal reportedly covered dozens of ODG patents, including a few dozen more patent applications in progress. Meanwhile, Oculus VR is said to have just a single patent, which vaguely describes “a virtual reality headset”.
Microsoft appears to be trying to get the best of both worlds – a wide FOV usually associated with VR devices, and a transparent display surface suitable for AR applications. The approach should allow HoloLens to utilize a lot less processing power than VR devices, while at the same time offering more functionality thanks to the wide FOV. Instead of trying to render photorealistic content, HoloLens could get away with a slightly lower resolution and image quality due to the limited opacity of displayed content. There is no need to create an illusion of reality, so there is a lot less hardware overhead involved. A lot of off-the-shelf technology could allow the HoloLens to reduce or eliminate aliasing and generate good looking composites, since the backdrop is already there.
This fact limits HoloLens’ appeal in the entertainment niche, as opposed to true VR headsets; but, it opens up a number of possibilities in other industries, ranging from engineering and healthcare to architecture and defense. HoloLens could be used to assist healthcare professionals, engineers, operators of industrial machinery, soldiers, and law enforcement.
However, HoloLens still has applications in the consumer space. Microsoft’s Phil Spencer said HoloLens needs to be a successful standalone product, adding that the company is already looking into ways of using it in unison with PCs and Xbox One consoles. The device could serve as a heads up display (HUD) for gamers, or even for fitness buffs in gyms.

HoloLens Hardware Conundrum

Microsoft has not revealed the exact hardware specifications, so we still don’t quite know what to expect. There is no word about display resolution, GPU GFLOPs, connectivity, or battery life. This leaves a lot of room for speculation, which the tech press is happy to fill with column inches and clickbait, but nothing is official yet.
Like I said, HoloLens should not require nearly as much GPU power as the Oculus Rift and similar VR products. However, this does not mean that Microsoft can get away with a cheap SoC, like the ones commonly used in mobile products. Microsoft currently uses a range of chips from different vendors – Qualcomm Snapdragon SoCs with integrated 4G/LTE for mobile phones, Intel chips for Surface Pro tablets (along with Nvidia SoCs on defunct Surface RT products), along with custom AMD APUs in the Xbox One.
Due to power considerations, the most obvious choice would be a Snapdragon SoC, similar to those used in Lumia phones. This does not mean that HoloLens would be as underpowered as Google Glass. HoloLens is a much larger device, with room for a bigger battery; and, the latest Snapdragon SoCs are vastly more powerful than the chipset used in Google Glass (which is significantly slower than chips used in smartwatches). Early benchmarks indicate that the Adreno 430 GPU used in Qualcomm’s upcoming flagship SoCs, like the Snapdragon 810, is a powerhouse capable of handling 4K resolutions and rendering relatively complex 3D content in 1080p.
It’s not just about sheer rendering performance. GPUs offer a lot of computing potential, and can be used for much more than gaming. Google used the Tegra K1 for Project Tango, which also deals with a number of technologies that could be very useful for AR or VR devices - automation, driverless cars, and so on. I already mentioned Vuforia, and there are other players in the GPU industry, but Nvidia has the advantage of using CUDA cores – it’s been a market leader in professional graphics and GPGPU compute markets for years.
However, we should not be locked into the “what’s out there” mindset. It will take a while before HoloLens goes on sale, and subsequent generations are bound to feature even more powerful hardware. Intel’s new 14nm Atoms are coming soon, while ARM-based 14nm and 16nm SoCs should appear a couple of quarters later. The new non-planar nodes will allow even more performance per watt, drastically improving overall performance without taking a toll on battery life.

Streaming As An Alternative

There is also an alternative which I mentioned earlier – cloud computing and streaming could be used to display complex, resource-intensive 3D content. The latest SoCs feature 802.11ac wireless and fast LTE modems, sufficient for high-resolution streaming. The downside to this approach, especially LTE, is lag.
If additional content is rendered locally, on a PC workstation or possibly even an Xbox One, lag should be limited, but remote cloud rendering could prove problematic. For example, Nvidia is trying to tackle this problem by setting up GRID servers at strategic locations, in an attempt to cover the biggest markets with low-lag game streaming. Just a few milliseconds of additional lag could compromise the user experience in an AR application.
A mobile SoC should be sufficient for most everyday tasks, such as Skype and some limited augmented reality applications. However, if an architect wants to walk into a construction site and see how the finished building will look using augmented reality, the HoloLens will have to be backed by more hardware; rendering complex scenes with hundreds of thousands or millions of polygons, advanced lighting effects, and so on.
The upside is that HoloLens could offer a lot of functionality out of the box, with a relatively powerful integrated GPU capable of handling a lot of everyday tasks, such as high resolution video streaming, browsing, and even casual gaming. On the other hand, professionals could employ 802.11ac or LTE to stream more complex content, rendered remotely.
Microsoft could practically use the same hardware platform for home users and professionals, with the latter employing local or cloud streaming for more advanced, resource-intensive tasks.

Is There A Use Case And A Market For HoloLens?

Microsoft showed off the HoloLens in a number of different scenarios. While the demos were quite interesting, they did not exactly spell out a realistic and commercially viable use case for the new device.
What I like about HoloLens is the fact that it is halfway between true wearables, like Google Glass, and wired VR solutions, like Oculus Rift. HoloLens does not have to be light and portable enough to wear on the street, but at the same time it does not have to be tethered to a computer or external power source – the best of both worlds. I also like the fact that Microsoft is choosing to lead rather than follow. HoloLens differs from existing concepts and products; it’s innovative, futuristic, and original - a breath of fresh air from Redmond.
However, this approach also raises a number of important questions about the use case for HoloLens, and the size of the market. It can’t replace a display like VR solutions, yet it can’t be used in everyday situations due to its sheer bulk and appearance. While you may see some commuters and athletes using smart glasses, you probably won’t see skiers or joggers wearing a HoloLens headset.
What could mainstream users do with HoloLens? What sort of software platforms and operating systems will be supported? What about professional applications? What about HoloLens cross-platform functionality, hardware specifications, retail price, and Bill of Material (BOM)?
A lot of questions still have to be answered, and it will probably take a while before Microsoft releases all the information.
Microsoft will have to target mainstream and professional markets at the same time, with the same hardware. Depending on the price and BOM, Microsoft could leverage its Xbox user base, as well as a segment of the PC gaming market, to bring HoloLens products to mainstream users. Marketing such a product won’t be easy if the price is too high, but the user base is there - and it is willing to spend a lot of money on new gadgets. A mainstream market approach would also help get more developers on board, thus expanding the ecosystem and creating new use cases.
But if HoloLens products are bound to be priced for the mainstream market, how will Microsoft go after the professional market, and make some money in the process?
Years ago I used to make a living in offline 3D graphics, and I can see a lot of potential in HoloLens. There are a lot of 3D/CAD users out there and many of them would agree. Does this mean that every designer will be able to pick up a HoloLens device priced for the mainstream market and use it for work? Possibly, but probably not.
There are other ways of marketing products in this space. I’ve been covering the GPU space for years, and in that time I’ve learned a thing or two about how the industry operates. Although high-end graphics cards for gamers get all the headlines, the real cash cows for Nvidia and AMD are professional graphics and compute solutions. They are the unsung heroes in this duopoly. The BOM for a consumer card and a professional card based on the same GPU is roughly the same, but professional cards cost a lot more, an order of magnitude more. They deliver huge margins, and generate a lot of revenue and profit, in spite of low overall volumes – you can check any Nvidia quarterly earning report for more info.
Microsoft could resort to a similar approach. HoloLens could use the same hardware for both markets, limit functionality on consumer models, and expand it on professional products through different licensing tiers.
Of course, this is all just speculation at this point - but that’s how this market works. Microsoft does not have to reinvent the wheel.
This article was written by NERMIN HAJDARBEGOVIC, a Toptal Technical Editor.

Microsoft HoloLens Review - Bridging The Gap Between AR And VR

Posted by Unknown
For years now, SketchUp users of all skill levels have provided 3D models to the world through 3D Warehouse. We’re continually surprised by the breadth of 3D Warehouse contributions, but for a while now, we’ve been wondering how to help people make good models great.
Recently, we have taken some time to reflect on What makes a great 3D Warehouse model? To get everybody on the same page, we have developed a checklist that should help you create beautiful, useful, and easy-to-operate 3D Warehouse models. We’ve also created an article and a video series that digs deeper into what each item on the checklist means and how to hone your SketchUp skills to achieve the desired results.

At a minimum, models should be at real world size so that others can place and use them easily in their models. We’re nuts for managing model efficiency, so we also think that models should be lightweight and have an appropriate number of polygons to represent the geometry correctly.
This checklist is a great guide for anyone creating a lot of 3D Warehouse content, and we think it will be particularly useful for building product manufacturers who are recreating their products on 3D Warehouse. Well-constructed models are easy for designers to incorporate and specify, and are the basis for improved design accuracy, cost estimates, and even public safety.
We love that it’s easy and fun to create SketchUp models; creating great 3D Warehouse models makes SketchUp even easier and more fun for everybody. Using this checklist, the SketchUp community can continue to contribute great, high quality models to share with an entire planet of designers.


Making great 3D warehouse model? Look the video

Posted by SketchuFurnitureModels
3D printing is not a new technology, but recent advances in several fields have made it more accessible to hobbyists and businesses. Compared to other tech sectors, it’s still a small industry, but most analysts agree it has a lot of potential. But where is the potential for freelance designers and software engineers?
A fellow Toptaler asked me this a couple of weeks ago, because I used to cover 3D printing for a couple of publications. I had no clear answer. I couldn’t just list business opportunities because this is a niche industry with a limited upside and mass market appeal. What’s more, 3D printing is still not a mature technology, which means there is not a lot in the way of standardisation and online resources for designers and developers willing to take the plunge.
However, this does not mean there are no business opportunities; they’re out there, but they are limited. In this post, I will try to explain what makes the 3D printing industry different, and what freelancers can expect moving forward.

3D Printing For Hobbyists And Businesses

First of all, I think we need to distinguish between two very different niches in the 3D printing, or additive manufacturing industry.
On one end of the spectrum, you have countless hardware enthusiasts, software developers and designers working on open-source projects. The RepRap project embodies this lean and open approach better than any similar initiative in the industry. RepRap stands for Replicating Rapid Prototyper and it’s basically an initiative to develop inexpensive printers based on fused filament fabrication (FFF) technology. Essentially, that is Fused Deposition Modelling (FDM) technology, but RepRap can’t use that name because it was commercialised by Stratasys. When the company’s patent on FDM expired, FDM was embraced by the open-source community, albeit under a different name.
3D printing is not a new technology, but recent advances in several fields have made it more accessible to hobbyists and businesses.
3D printing is not a new technology, but recent advances in several fields have made it more accessible to hobbyists and businesses.
RepRap turned ten this year, with the first printers showing up a few years after launch. By 2010, the RepRap project was on its third generation design, and the RepRap community saw a lot of growth over the next few years.
One noteworthy feature to come out of the RepRap initiative is self-replication; the ultimate goal of the project is to create a 3D printer that will eventually replicate itself. We are not there yet, but some RepRap designs allow users to print three quarters of the printer. You still can’t print extruders and electric servos, but it’s a start.
However, RepRap was never supposed to be a commercial success. It was created as a tech-first initiative, so it was never consumer-centric. It was all about pioneering various technologies and bringing them to the hobbyist market at low cost. RepRap was never supposed to be a cash cow.
So what about big business? A number of industry pioneers have already become 3D printing heavyweights. These include Stratasys, 3D Systems, Ultimaker and Printbot. RepRap printers still command a big market share, and they’re not being squeezed out by proprietary platforms. In fact, most vendors have no choice but to embrace some RepRap standards in order to guarantee compatibility.
However, simply listing 3D printing companies and their respective market share does not paint the full picture. For example, RepRap is limited to FFF technology, which is the most widespread 3D printing technology today. The problem is that FFF printers have a lot of limitations, which means they cannot be used in many industries.

Different Technologies For Different Applications

To get a better idea of what’s out there, we need to take a look at currently available 3D printing technologies. This might not seem interesting if you’re not a hardware geek, but it’s important to understand the difference between various printing technologies (and I will try to keep this section as brief as possible).
Although hobbyist FFF printers are relatively inexpensive, certain types of professional 3D printers can cost as much as your home.
Although hobbyist FFF printers are relatively inexpensive, certain types of professional 3D printers can cost as much as your home.
  • FFF/FDM usually relies on thermoplastic “filament” heated by the printer extruder prior to being deposited on the print bed. Most FFF printers rely on ABS and PLA plastic filament, but the latest models also use polycarbonate (PC), high-density polyethylene (HDPE), high-impact polystyrene (HIPS) filament. Some even use metal wire instead of plastic, while others use sawdust to create quasi-wood objects. Some can even print food, chocolate, pasta and so on.
  • Granular printers are different beasts since their material is not filament but, usually, powdered metal. These printers tend to be based on laser technology (although they don’t have much in common with your office laser printer). They use a powerful laser to selectively fuse granular materials. There are several ways of doing this: Selective laser sintering (SLS) printers fuse small metal particles by the process of “sintering,” while selective laser melting (SLM) printers melt the powder. Electron beam melting (EBM) printers hits metal powder with an electron beam in a vacuum environment
  • Stereolithography (SLA) printers transform liquid raw material into solids using light. These printers have a number of advantages, in terms of accuracy and the ability to produce complex objects in a single pass, because SLA prints don’t require struts or supports, in most cases. The downside is that the choice of materials is very limited. They are usually exotic liquid polymers, and can’t be used to print metal or chocolate.
There are a few more 3D printing technologies out there, but I see no point in covering all of them for the purposes of this blog post.

The Challenge

So why aren’t we all playing around with 3D printers in our homes and offices? Why can’t we print objects the same way we print invoices, sheets and emails? 3D printing is not going mainstream any time soon, and here are some challenges and issues that need to be addressed first.
  • Prohibitively expensive hardware
  • Limited user base (compared to traditional printers)
  • Immature technology
  • Speed
  • Price/performance, ROI
  • Running costs
  • Energy efficiency
With each new generation, entry-level 3D printers become a bit cheaper, but they are still too expensive for most potential users. It’s one thing to buy a $200 printer for your home or office, you’ll probably end up using it a lot, but the same isn’t necessarily true of 3D printers. How many people need to print documents, and how many need to print 3D objects?
Technology is improving, but serious limitations persist. 3D printers are still slow, are sensitive to all sorts of adverse conditions, their “printbeds” tend to be small (especially on inexpensive models), the choice of materials is limited and filament can be expensive.
The reason why businesses aren’t lining up to buy 3D printers is simple: ROI. 3D printers still can’t come close to traditional manufacturing methods in terms of speed, cost and energy efficiency. This does not mean industry isn’t going to shift to 3D printing in the future; we are already seeing some pioneering developments, but 3D printers won’t render traditional manufacturing techniques obsolete soon.
Still, there are some noteworthy exceptions. A couple of years ago, General Electric set out to design and build a new fuel injection nozzle for its next generation CFM LEAP turbofan engine, which is bound to end up in hundreds of airliners. GE eventually settled on 3D-printed titanium nozzles. The reason? The new 3D printed nozzle ended up 25 percent lighter than the previous design and consisted of a single part instead of 18 on the old nozzle. Durability is expected to be five times better. These nozzles will be used in engines manufactured in 2016 and beyond. GE hopes to produce more than 100,000 3D-printed parts by the end of the decade.
A team of GE engineers decided to create a working replica of one of the company’s engines, using a new granular printing technique dubbed “metal laser melting.”
Long story short, no, you won’t buy 3D-printed toys for $2 anytime soon, but you will fly on airliners powered by more efficient and reliable engines, made possible by 3D printing. There won’t be any 3D-printed chocolate in your local mall, at least not yet, but your dentist will tell you it’s probably not a good idea to eat chocolate anyway, right after you get your 3D-printed prosthetic.

There Is Another Way: 3D Printing Fulfilment Services

So, you have a great idea for a product, but first you need a small series of prototypes. Who do you call? Do you buy a bunch of 3D printers? Or do you simply send the design to a fulfilment service that will ship you the completed models in a matter of days?
Fulfilment services allow consumers and small businesses to take advantage of sophisticated 3D printing infrastructure without burning capital.
Fulfilment services allow consumers and small businesses to take advantage of sophisticated 3D printing infrastructure without burning capital.
A 3D printing fulfilment service seems like a hassle-free choice, and that’s the direction the industry seems to be taking. Many 3D printing outfits have launched similar services and are collaborating with other industry leaders. One example of this symbiotic relationship is Stratasys Direct Express, which recently partnered with Adobe and enabled Photoshop CC integration, offering colour 3D printing for professional designers.
Google and Motorola didn’t invest billions in their own 3D printing facilities when they unveiled the Ara modular smartphone concept. They outsourced module manufacturing to 3D Systems. This example also underscores the potential flexibility of additive manufacturing: Ara is based around an alloy exoskeleton filled with various standardised modules that could be 3D printed. Since the modules have to connect to the exoskeleton, 3D Systems developed a new technique of depositing conductive materials within the printed components, which is a far cry from traditional 3D printer prototyping.
3D fulfilment services usually offer several different printing technologies, cutting-edge hardware and support. Why bother getting a $2,000 printer when you can simply send your designs to professionals and use any of a variety of professional printers, some of which cost more than your home? And let’s not forget about economy of scale; big services can and should offer a superior price/performance ratio compared to in-house printing.
In my opinion, this is the way to go. This straightforward business model has a lot going for it, and it’s hard to see how individuals and small businesses could compete on an even playing field. In terms of price, size and energy consumption, a professional 3D printer has more in common with a printing press than your LaserJet, and how many people need a printing press in their home or office?
(One of my pet peeves is the name itself. When you mention a “printer” in conversation, most people think of their home inkjet printer, or office printer. While it’s true that 3D printers are printers, they don’t have much in common with traditional printers, and this distinction is often lost on laymen. If we just kept calling them additive manufacturing machines, this wouldn’t be an issue.)

3D Printing For Designers And Developers

What does all this mean for the average visual designer or software engineer? Will 3D printing change the way we do business? Will it enable rapid prototyping or even cheap small-scale manufacturing? When are we going to cook up some 3D-printed Barilla pasta for lunch?
I am afraid there is no simple answer because you can look at it from several perspectives. It all depends on your personal affinities and goals.
There are a few different ways designers and developers might become involved in 3D printing:
  • Participation in open-source initiatives (RepRap)
  • Use of professional design tools (Adobe CC)
  • Integration of printing functionality to applications (Autodesk’s Spark 3D printing platform)
  • Use of 3D printing fulfilment services
  • Integration of 3D printing fulfilment services
Most open-source initiatives are geared toward individual, hobbyist users. They are also valuable for education, and they can foster a lot of innovation. The downside is that there’s not a lot of money to be made in this niche. It’s mostly a labour of love. The good news is that the bar is set pretty low; you can get an entry-level printer and loads of plastic filament for under $500. You can get a cheap and relatively good 3D printer for the price of a good smartphone.
Integration of 3D design and printing capabilities could prove more lucrative in the long run. Designers don’t have to go out of their way to experiment with 3D printing because it’s already accessible through leading software packages. Sooner or later, a client will start asking questions about 3D printed prototypes or small-scale production, so depending on your niche, it could be a good idea to do a bit of research.
We’re left with the elephant in the room: 3D printing fulfilment services.

Outsourcing 3D Printing Via The Cloud

On the face of it, fulfilment services seem to be the answer to everything. They put professional services within the reach of individuals, startups, and small businesses who otherwise couldn’t afford certain printing techniques, like laser sintering or stereolithography. They’re practically the only viable way of integrating 3D printing into a range of different services, mainly through cloud-based mobile and web apps.
So what are the downsides? There aren’t many.
Industrial scale fulfilment services are a relatively new concept. However, availability is still limited. Sure, if you need to print a few dozen titanium prototypes in California that won’t be a problem, but what if you need to do the exact same thing in Botswana or Bahrain? It will be more expensive because the manufactured designs will have to be shipped around the globe. On-site manufacturing sounds good, but it could prove prohibitively expensive
Of course, on-site manufacturing has a lot going for it; if a business needs to quickly iterate and revise designs, then the speed and convenience of 3D printer rapid prototyping can’t be matched by printing services. This is a relatively tight niche, but it’s by no means small. Design studios, architects, engineers, various maintenance departments, logistics, education; they all need on-site printers. Besides, if you need a printed replacement part on the International Space Station, you can’t exactly call Amazon. On another note, 3D printing in space would have made the exploits of the Apollo 13 crew look less impressive. No wonder NASA is already experimenting with them in space.
It’s worth noting that 3D printers can be used to print more than replacement parts and passive components. They can also be used to print working electrical components, ranging from speakers to printed circuit boards (PCB). PCB prototyping is a nice niche because traditional methods are slow and expensive. A 3D printer with a spool of conductive filament can usually do the trick on-site, on time, and on budget.
Still, as far as mass market applications go, chances are this space will be dominated by big players like Amazon, Stratasys, 3D Systems, and possibly Hewlett-Packard. As the industry matures, worldwide availability should become a non-issue, prices will go down and new hardware will offer new opportunities and superior quality.
In my opinion, the biggest problem the industry currently faces is the lack of use-cases. Sure, it sounds convenient, but who is it for? How do we get 3D-printed products into the hands of mainstream consumers?
This question is not as straightforward as it seems because additive manufacturing has been hyped in recent years. Just try googling for 3D printing use-cases and you’ll see what I mean: 3D printing seems to be the answer to all our problems, but in reality most of it is hype, based on long-term projections.
So, I decided to include research from an unbiased source: UK’s Intellectual Property Office. The paper, titled The Current Status and Impact of 3D Printing Within the Industrial Sector: An Analysis of Six Case Studies is extensive and examines the potential impact of additive manufacturing on several industries: automotive, domestic appliances, replacement parts, customised goods, reverse engineering, games and computer generated graphics.
Customised goods and CGI-derived designs stand out as the most realistic use cases for freelancers, so let’s take a closer look.

Personalised Manufacturing

One of the biggest advantages of additive manufacturing over traditional manufacturing methods is the ability to produce one-off designs or small series. How long would it take to create a plastic toy using traditional manufacturing? You’d need loads of equipment, cast dies and whatnot. With 3D printing, it’s just a matter of selecting a wireframe and clicking. This means it’s possible to produce unique designs, tailored to meet the needs of different customers.
Additive manufacturing can enable average consumers to design and customise various products prior to making a purchase. This can be done using professional desktop applications, or even web and mobile apps. Nobody expects the average consumer to design an item from the ground up, but even a child could customise a toy using a simplified mobile app.
The potential for personalised manufacturing is one of the key benefits provided by 3D printing.
The potential for personalised manufacturing is one of the key benefits provided by 3D printing.
Such a platform would have to include loads of different colour or decal options, along with the 3D wireframes themselves. What’s more, it should be possible to create modular designs, so if kids are customising a toy car or doll, they could choose between scores of different, but compatible, components that would be assembled to make the product.
Yes, instead of customising virtual environments in apps and games, kids born today will be able to personalise their real toys, or turn their video game characters into action figures. It kinda makes you wish you were born a couple of decades later, doesn’t it?
Here are a few personalised 3D printing use-cases with mass market appeal:
  • Toys
  • Custom jewelry
  • DIY and hobbyist products
  • Fashion and gadget accessories
  • Personalised appliances and household items
However, products don’t have to be personalised to match your taste; they could also be made to perfectly match your physique, like a tailored suit. These products might not have the mass market appeal of personalised toys, but that doesn’t make them less exciting. In fact, I find them a lot more interesting than a customised brooch or doll.
Here are just some examples:
Sure, these applications don’t have nearly the same emotional appeal as the ones I mentioned earlier, but in the big scheme of things they could be just as lucrative and important, especially when you consider medical applications.

The Implications And Future Of 3D Printing

So what’s the bottom line? Will 3D printing change the industrial landscape? Is it really the next industrial revolution?
3D printing, or additive manufacturing, is a very promising, but immature, technology. It clearly has a lot of potential, but we’re still nowhere close to realising it even though the industry is seeing a lot of growth.
In fact, the market for 3D printing services, hardware, and materials, has been growing at a healthy double-digit rate for years. Most analysts expect the market to double by the end of the decade, passing the $10 billion mark. That may sound like a lot of money, but let’s put it in perspective: The same analysts expect annual smartphone shipments for 2015 to end up in the 1.3 to 1.4 billion unit range.
Looking past the hype, 3D printing is a technology with limited appeal, at least at this early stage. However, we will continue to see growth and development for the foreseeable future, backed by new use-cases. Many of these use-cases and business models will be based around 3D printing fulfilment services. This is good news for small businesses and individuals, because they will be able to use third-party infrastructure with relative ease. They won’t have to buy dozens of printers, they will simply integrate a few APIs to their platform and that’s it.
In the short term, this is the future of 3D printing, at least from a mass market perspective.
This post originally appeared in the Toptal Design blog


3D Printing: Should Designers And Developers Take Notice?

Posted by Unknown